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A simple two-phase model for steady fully developed flows of particles and water over
erodible inclined beds is developed for situations in which the water and particles
have the same depth. The rheology of the particles is based on recent numerical
simulations and physical experiments, the rheology of the fluid is based on an eddy
viscosity, and the interaction between the particles and the fluid is through drag and
buoyancy. Numerical solutions of the resulting differential equations and boundary
conditions provide velocity profiles of the fluid and particles, the concentration profile
of the particles, and the depth of the flow at a given angle of inclination of the
bed. Simple approximations permit analytical expressions for the flow velocities and
the depth of flow to be obtained that agree with the numerical solutions and those
measured in experiments.

1. Introduction
Debris flows are mixtures of water and cohesive or cohesionless particles driven

down slopes by gravity. They invariably consist of unsteady non-uniform surges
of heterogeneous mixtures, exhibit strong grain-size segregation, and involve non-
hydrostatic distributions of fluid pressure (Iverson 1997).

Because of the high solid concentrations that characterize debris flows, direct
interactions between particles are common. Consequently, the resistance to motion
associated with frictional collisions between the grains must be taken into account in
descriptions of such flows.

Models of debris flows as a single-phase fluid exist. They typically employ a non-
Newtonian rheology to incorporate the effect of the grain interactions (see Takahashi
1991; Coussot 1994; Chen & Ling 1998; Brufau et al. 2000). The rheologies adopted
range from rigid-viscous (yield, followed by a linearly viscous shear stress) (Bingham
1922) to collisional (shear and normal stresses quadratic in the shear rate) (Bagnold
1954). More elaborate models (Iverson 1997; Jenkins & Hanes 1998) distinguish
between the two phases and assume that they interact through drag and buoyancy.

In recent years, there has been much theoretical and experimental work on inter-
particle interactions for the case of dry granular flows. In particular, recent extensions
of kinetic theories (Mills, Tixier & Loggia 1999, 2000; Aranson & Tsimring 2002;
Louge 2003; Kumaran 2006; Jenkins 2006, 2007) and numerical and experimental
simulations of motions of disks and spheres (Pouliquen 1999; GDR MiDi 2004; da
Cruz 2005) furnish some hints about the possibility of using a simple constitutive
model for dense flows of dry grains, at least for the case of steady fully developed flows.
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In experiments, Armanini et al. (2005) investigated the steady fully developed
flow of water and plastic cylinders in a rectangular inclined flume. This is an
extremely idealized debris flow. However, because of its simplicity, Armanini and
co-workers were able to measure the distributions of velocity, concentration and
granular temperature of the grains across the flow and to make comparisons with
the predictions of kinetic theories. In their experiments, the mixture of water and
grains flowed either over a rigid bottom or over an erodible bed. For the flows over
an erodible bed, the authors distinguished three cases, depending on whether the
height of the flowing grains was equal to the height of the flowing water (saturated
debris flow), the height of the flowing grains was less than the height of the flowing
water (oversaturated debris flow) or the height of the flowing grains was greater than
the height of the flowing water (undersaturated debris flow).

Our goal is to provide a model of steady fully developed debris flows over erodible
beds that incorporates the essential physics of the process, reproduces the experimental
observations of Armanini et al. (2005), and is simple enough to give approximate
analytical solutions for engineering applications. Because in saturated flows the fluid
and particle phases have a common free surface, the boundary conditions there are
simpler than for under- and over-saturated flows. Consequently, we focus here on
saturated debris flow, and defer the analysis of the more complicated situations.

The mixture of water and cohesionless granular material is treated as a two-phase
flow. A very simple but realistic rheology suggested by experiments on dry granular
flow is adopted for modelling the resistance in the particle phase. The rheology results
from momentum transferred in collisions that involve more than two particles. As the
concentration increases, the number of particles involved in simultaneous collisions
increases and ephemeral chains of particles begin to dominate the momentum
transfer. In the constitutive relation that describes this, there are two parameters:
a yield, associated with the minimum angle for which a steady flow is possible; and
the coefficient of the rate dependent part, determined by fitting with experiments.
However, once determined for a given granular material, the latter remains fixed and
does not depend on the characteristics of the flow. Because the experiments indicate
that the interstitial fluid does not influence the interaction between the particles,
we do not include such a contribution. It has been incorporated in the context of a
single-phase model for submarine debris flows by Cassar, Nicolas & Pouliquen (2005).
However, in such flows, the particle interactions are far less violent than in debris flows.

The presence of the sidewalls in the rectangular laboratory flume used by Armanini
et al. (2005) is taken into account in the way suggested by Taberlet et al. (2003),
through a Coulomb friction term. Indeed, it has been demonstrated that the sidewall
resistance is responsible for the development of an erodible bed in the case of steep,
dense, dry granular flows (Taberlet et al. 2003; Jop, Forterre & Pouliquen 2005).
Here, it is assumed that this is also the case for dense granular–liquid mixtures.
In the same spirit, a very simple turbulence model based on the mixing-length
hypothesis is adopted for the momentum transfer in the liquid phase. Finally, as in
other two-phase models, it is assumed that the interaction between the liquid and
the solid is due only to buoyancy and drag.

In order to obtain an approximate analytical description of the flow, two further as-
sumptions are made that seem reasonable and consistent with the experimental obser-
vations: the solid concentration and the difference in the velocities of the phases
across the flow are each taken to be constant. These assumptions permit the
derivation of analytical expressions for the velocity profiles of the liquid and particle
phases, the depth of the flow, and the inclination of the free surface as functions of
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Figure 1. The re-circulating flume used by Armanini et al. (2005).

the particle and liquid discharge. They are also the first step in an iterative procedure
leading to improved concentration and velocity profiles.

In § 2, the experiments are described. In § 3, the equations governing the motion
of the debris flow are presented and the constitutive models and the simplifying
assumptions adopted in this work are introduced. In § 4, comparisons with the experi-
ments performed by Armanini et al. (2005) and Larcher et al. (2007) are made and
discussed. Finally, in § 5, some conclusions and suggestions for future improvements
of the present theory are drawn.

2. Experiments
The experiments reported by Armanini et al. (2005) and Larcher et al. (2007) were

carried out in the recirculating flume shown in figure 1 (from Armanini et al. 2005).
It consisted of a glass-walled open channel fed by an external conveyor belt. In it,
they were able to maintain a steady fully developed flow in a section of the channel.
Armanini et al. (2005) controlled the total amount of water and particles in the flume
and its angle of inclination. Given the angle of inclination, a steady fully developed
flow was achieved in a section of the channel after a certain fraction of the particles
was deposited in the bed. In this section of the channel, the inclination of the bed
was, in general, different from the inclination of the flume. The inclination of the bed
then determined the volume flow rates of water and particles above it. In steady fully
developed conditions, the angle of inclination of the free surface is equal to that of
the bed.

The steady fully developed debris flow was filmed through the glass wall of the open
channel using a high-speed video camera. An example of a single frame is shown in
figure 2 (from Armanini et al. 2005). It is possible to see the variation of the velocity
and solid concentration moving from the free surface towards the bed. Using image-
processing techniques, Armanini et al. (2005) were able to obtain a detailed description
of the flow in terms of the distributions of grain velocity, concentration, granular
temperature and stresses. These are crucial pieces of information for evaluating the
capability of a mathematical model to capture the key features of a debris flow.
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Figure 2. A frame of a steady fully developed flow (from Armanini et al. 2005).
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Figure 3. Sketch of a saturated debris flow over an erodible bed.

The goals of the present work are to predict the depth of the flow and the profiles
of grain velocity, water velocity and concentration, given the angle of inclination of
the bed, to calculate the total flux of grains and water from these, and to compare
the profiles and the fluxes with those measured in the experiments.

3. Theory
A sketch of the geometry of a saturated debris flow over an erodible bed is shown

in figure 3. We take z = 0 to be the free surface and z = h the erodible bed, and let
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ρ denote the fluid mass density, c the grain concentration, g the acceleration due to
gravity, θ the free-surface inclination, σ the grain specific mass, d the grain diameter,
η the fluid viscosity, U the fluid velocity, and u the grain velocity.

3.1. Fluid momentum balance

The balance of fluid momentum transverse to the flow is

P ′ = ρg cos θ, (3.1)

where P is the fluid pressure. Here and in the following, a prime indicates a derivative
with respect to z.

The balance of fluid momentum in the direction of flow is

S ′ = (1 − c)ρg sin θ − Δ, (3.2)

where

S = −(1 − c)[ρκ2(h − z)2 | U ′ |]U ′ (3.3)

is the fluid shear stress and

Δ = ρ
c

d

1

(1 − c)3.1

(
3

10
| U − u | +18.3

η

ρd

)
(U − u) (3.4)

is the drag. In the constitutive relation (3.3) for the fluid shear stress, the approximation
is made that the mixing length in the turbulent viscosity is proportional to the
distance from the bed through Kármán’s constant, κ = 0.41. The presence of the
particles is expected to influence the turbulence, but in the absence of any data,
we have no information to guide a modification of this parameter. In order to
avoid the logarithmic singularity in the velocity profile, we replace the turbulent
viscosity with the molecular viscosity very close to the bed, where the latter exceeds
the former. Equation (3.4) for the drag is, perhaps, the simplest form of a drag
force (Dallavalle 1943) that incorporates viscous drag, form drag and concentration
dependence (Richardson & Zaki 1954).

3.2. Particle momentum balance

The balance of particle momentum transverse to the flow is

p′ = ρc(σ − 1)g cos θ, (3.5)

where p is the particle pressure. Here, buoyancy has been incorporated in the body
force. If W is the chute width and μw the wall friction, the corresponding component
parallel to the flow is

s ′ = ρσcg sin θ + Δ − 2
μw

W
p, (3.6)

where s is the grain shear stress. Here, it is assumed that the sidewalls exert a
frictional force on the particles, as in the case of dry granular flow (Taberlet et al.
2003; Jop et al. 2005). The use of this term in the particle momentum balance implies
an influence of the channel width on the particle transport capacity. However, in
interpreting their experimental results, Armanini et al. (2005) did not regard the
influence of the sidewalls as being significant. The importance of the sidewall friction
will be evaluated in the context of an approximate analytic solution for the velocity
profiles.

In the version of the GDR MiDi (2004) rheology that we employ, the grain shear
stress is given in terms of p and an effective coefficient of friction μ:

s = μp. (3.7)
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Figure 4. (a) The linear relation between effective friction μ and inertial parameter I for
circular disks (from da Cruz et al. 2005). (b) The corresponding linear relation between
concentration and I .

Dimensional analysis shows that for one-dimensional shearing flows that are
homogeneous and steady, μ and c are only functions of the inertial parameter

I =
d | u′ |

(p/ρcσ )1/2
. (3.8)

The inertial parameter is the ratio of time scales associated with grain motion
perpendicular and parallel to the flow, respectively. Cassar et al. (2005) suggest that
the definition (3.8) of the inertial parameter is valid only in the free-fall regime
identified by Courrech du Pont et al. (2003), in which the particle inertia dominates
the fluid drag. This is the case in the experiments on saturated debris flow performed
by Armanini et al. (2005).

The flow behaviour results from momentum transferred in collisions that involve
more than two particles. As the concentration increases, the number of particles
involved in simultaneous collisions increases and ephemeral chains of particles begin
to dominate the momentum transfer. This is responsible for a smooth transition from
a regime that involves multiple simultaneous collisions to a regime that involve static
chains of contacting particles in the bed.

The algebraic relation between the stress ratio and the inertial parameter can be
placed in the context of the kinetic theory and a slight extension of it appropriate
to dense flows. When the divergence of the flux of fluctuation energy of the kinetic
theory vanishes, an algebraic determination of the granular temperature in terms of
the shear rate is possible. Numerical simulations of dense dry flows (Silbert et al.
2001; Mitarai & Nakanishi 2005) indicate that this is the case in dense flows over an
inclined rigid bed in the absence of sidewalls. Then, as indicated by Jenkins (2006), a
correspondence can be made between the rheology that involves the inertial parameter
and that of the kinetic theory, at least in the region of the flow in which collisions
dominate the particle interactions.

Numerical experiments on simple shear flows of disks (figure 4 from da Cruz et al.
2005) suggest that at high solid concentrations, simple linear expressions are valid
for μ:

μ = μmin + χI, (3.9)
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and c

c = cmax − bI, (3.10)

where μmin , χ , cmax and b are numerical coefficients. The coefficient μmin is the
smallest value of μ for a steady fully developed flow and cmax is the corresponding
value of the particle concentration.

Figure 4(a) suggests that the effective friction saturates at large values of the inertial
parameter (GDR MiDi 2004; Jop et al. 2005). This saturation has been related to
the existence of a maximum angle for steady fully developed dry granular flows over
an inclined plane (Pouliquen 1999). Saturation can be incorporated in the simple
rheology by assuming that (3.9) is valid up to a maximum value μmax of the effective
friction and constant thereafter.

3.3. Boundary conditions

In order to solve the flow problem, we must specify boundary conditions. At the
common free surface of the particles and water, we assume that the stresses vanish

P (0) = 0, S(0) = 0, p(0) = 0, s(0) = 0. (3.11)

When dealing with granular flows over an erodible bed, it is necessary to determine
the location of the bed. This requires that the physical characteristics of the bed be
specified. Experiments on inclined dry particle flows carried out over extremely long
times indicate that the bed creeps (Komatsu et al. 2001). However, over the much
shorter time scales of the experiments performed by Armanini et al. (2005), it is
reasonable to assume that the grains in the bed remain fixed, so that

u(h) = 0. (3.12)

This implies that in the bed the effective friction has a value less than or equal to
μmin and the concentration is greater than or equal to cmax , where the equalities apply
at the interface with the flowing layer:

s(h)/p(h) = μmin, c(h) = cmax . (3.13)

A final assumption is that the fluid shear stress vanishes in the bed, so that the
gravitational force is balanced only by the drag force. The study of dense collisional
flows of massive sediment by Jenkins & Hanes (1998) indicates that the shear stress
in the fluid phase is essentially zero at the bed and the total shear stress there is
dominated by momentum transferred in particle interactions. Then, as in groundwater
flows (de Marsily 1981),

(1 − cmax ) sin θ − cmaxC |z=h U (h) = 0, (3.14)

where

C |z=h=
1

(1 − cmax )3.1

[
3

10
U (h) + 18.3

η

ρd

]
. (3.15)

3.4. Numerical solution

In order to obtain numerical solutions, the momentum balances and constitutive rela-
tions are phrased in terms of dimensionless variables, with lengths made dimensionless
by d , velocities by (gd)1/2, and stresses by ρσgd . For simplicity, in the following, the
notation already introduced for the dimensional variables will be employed for their
dimensionless counterparts. The resulting system of six first-order ordinary differential
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equations for P , S, U , p, s and u on the interval 0 � z � h are, then,

P ′ =
1

σ
cos θ, (3.16)

S ′ = (1 − c)
1

σ
sin θ − c

σ
C(U − u), (3.17)

where

C =
1

(1 − c)3.1

(
3

10
| U − u | +

18.3

R

)
, (3.18)

with R = ρd(gd)1/2/η;

U ′ = −
[

σS

(1 − c)κ2(h − z)2

]1/2

, (3.19)

where this is regularized by the molecular viscosity at the bed;

p′ =

(
1 − 1

σ

)
c cos θ, (3.20)

s ′ = c sin θ +
1

σ
cC(U − u) − 2

μw

W
p, (3.21)

u′ = −
(

p

c

)1/2
cmax − c

b
, (3.22)

where

c = cmax − b

χ

(
s

p
− μmin

)
. (3.23)

At the free surface, the indeterminate form s/p =0/0 is evaluated using L’Hospital’s
rule:

s

p

∣∣∣∣
z=0

= lim
z→0

s ′

p′ =
σ

σ − 1
tan θ +

1

σ − 1

C(U − u)

cos θ

∣∣∣∣
z=0

. (3.24)

The seven boundary conditions associated with the system of first-order equations
are:

P (0) = 0, p(0) = 0, S(0) = 0, s(0) = 0, u(h) = 0, s(h) − μminp(h) = 0, (3.25)

and

(1 − cmax ) sin θ − cmaxC |z=h U (h) = 0. (3.26)

The additional boundary condition permits the determination of the depth h as part
of the solution.

In a numerical solution, the angle of inclination is specified and the MATLAB c©

program bvp4c is employed to predict P (z), S(z), U (z), p(z), s(z), u(z) and h. From
these, the concentration c(z) can be evaluated. Then, the volume fluxes of grains q

and of fluid Q may be calculated using

q = W

∫ h

0

c(z)u(z) dz, Q = W

∫ h

0

[1 − c(z)] u(z) dz. (3.27)

In the next subsection, the results of such a numerical solution are compared with
those of a simple analytical approximation.
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3.5. Approximate analytical solution

To obtain approximate analytical solutions, three approximations are made:
(i) in the turbulent viscosity, the mixing length is assumed to be constant and the

turbulent viscosity is taken to be its average through the flow,

S =
1

σ
(1 − c)k2h2U ′2, (3.28)

where k = 0.20; (ii) the concentration is initially assumed to be constant

c = c̄; (3.29)

and (iii) because the densities of the particles and fluid are not so different, the particle
and fluid velocity profiles are assumed to have a similar shape; hence,

u′ = U ′. (3.30)

That is, the difference between the particle and fluid velocities is assumed to be
constant.

The drag force (3.4) can be used in the particle flow momentum balance (3.6)
and the resulting equation integrated to obtain the distribution of the particle shear
stress. In dimensionless terms this yields

s = sin θ

∫ z

0

c dz +
1

σ
sin θ

∫ z

0

(1 − c) dz − S − 2
μw

W

∫ z

0

p dz. (3.31)

Similarly, the distribution of the particle pressure can be obtained through integration
of (3.5). The dimensionless result is

p = cos θ

(
1 − 1

σ

)∫ z

0

c dz. (3.32)

With the approximation (3.28) for the fluid shear stress, the ratio of particle shear
stress and pressure is, from (3.31) and (3.32),

s

p
=

σ

σ − 1
tan θ +

∫ z

0

(1 − c) dz

(σ − 1)

∫ z

0

c dz

tan θ − (1 − c)k2h2U ′2

σp
− 2

μw

W

∫ z

0

(∫ ζ

0

c dz

)
dζ∫ z

0

c dz

.

(3.33)
With the approximations of constant concentration (3.29) and constant difference

in the particle and fluid velocities (3.30), (3.33) may be rewritten as

μ =
σ

σ − 1
tan θ +

1

σ − 1

1 − c̄

c̄
tan θ − k2h2 1

σ

1 − c̄

c̄
I 2 − z

W
μw, (3.34)

where

I = − u′

(p/c̄)1/2
= − u′

(1 − 1/σ )z cos θ
. (3.35)

Equation (3.34) provides an explicit characterization, in the context of the approxi-
mations, of how particle gravity, fluid gravity, turbulent shear stress and sidewall
friction influence the stress ratio of the particle phase. In the limit σ → ∞, (3.34)
contains, as a special case, the dry granular flow over an inclined bed between vertical
sidewalls studied by Jop et al. (2005) and, in the limit σ → ∞ and W → ∞, the dry
granular flow over an inclined rigid bed in the experiments of Pouliquen (1999).



402 D. Berzi and J. T. Jenkins

–0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

D
is

ta
nc

e 
fr

om
 th

e 
be

d,
 d

Figure 5. Individual contributions to the stress ratio through the depth of the flow: xxx,
particle gravity; - - -, fluid gravity; · · ·, fluid turbulence; - · -, sidewalls; —, total effective
friction μ.

In figure 5, the contribution of each of these terms to the total is indicated for the
parameters of the model introduced in the next section, for θ = 8.5◦. The buoyancy
reduces the particle pressure with respect to the dry case and, therefore, the particle
gravity is enough to maintain the motion of the grains at values of the angle of inclin-
ation much lower than the angle of repose of the dry material. Indeed, figure 5 shows
that the particle gravity is greater than μmin , the value of μ at the bed. The sum of
fluid gravity and turbulent shear stress is the drag acting on the particles. The absolute
value of the turbulent shear stress is maximum at the free surface, where it is of the
same order of magnitude as the fluid gravity. Consequently, the drag there is small and
could also change sign, whereas it has a positive maximum at the bed. This explains
why, in the numerical solution introduced later in this subsection, the fluid in the lower
part of the flow is faster than the particles, corresponding to a positive drag; whereas
that in the region close to the free surface is slower, corresponding to a negative drag.

In the context of the model, the term associated with the sidewall friction provides
the only mechanism for the development of an erodible bed in a steady fully developed
flow. It permits the stress ratio μ to decrease with distance from the free surface and
to reach its minimum value μmin at the bed. Given that the bed is characterized by
particles with zero velocity and, at z =h, U ′ = u′ = 0, I = 0 and μ = μmin , the depth of
the flowing layer can be determined from (3.34):

h =

[(
1 +

1 − c̄

c̄

1

σ

)
σ

σ − 1

tan θ

μw

− μmin

μw

]
W. (3.36)

In addition, (3.34) provides the maximum and minimum angles of inclination for
steady fully developed flow. Because, at z = 0, μ must be greater than μmin ,

tan θ �
μmin

1 + (1/σ )(1 − c̄)/c̄
; (3.37)
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and, because it also must be less than μmax there,

tan θ �

(
1 − 1

σ

)
μmax + (k/χ)2h2(1/σ )(μmax − μmin)

2(1 − c̄)/c̄

1 + (1/σ )(1 − c̄)/c̄
. (3.38)

Knowledge of μmin and μmax determines the range of angles for which steady fully
developed flows are possible. Alternatively, the range of angles for which such flows
are possible for a given angle of inclination can be used to determine μmin and μmax .

In (3.37) and (3.38), the rheology μ =μmin + χI was employed to infer that for
μ = μmin , I =0 and for μ = μmax , I = (μmax − μmin)/χ . This rheology is then used in
(3.34) to obtain the quadratic equation,

k2h2

σ

1 − c̄

c̄
I 2 + χI −

[
1

σ − 1

(
σ +

1 − c̄

c̄

)
tan θ − μmin − z

W
μw

]
= 0. (3.39)

This quadratic may be solved for I and integrated to obtain the particle velocity
profile:

u

(1 − 1/σ )1/2
= −χ(cos θ)1/2

3D
(h3/2 − z3/2)

− (BD cos θ)1/2

2D

[
(z − F )(2Fz − z2)1/2 + F 2 sin−1

(
z − F

F

)]

+
(BD cos θ)1/2

2D

[
(h − F )(2Fh − h2)1/2 + F 2 sin−1

(
h − F

F

)]
,

(3.40)

where

A =
tan θ

σ − 1

(
σ +

1 − c̄

c̄

)
− μmin , B =

μw

W
, D = k2h2 1

σ

1 − c̄

c̄
, F =

χ2 + 4AD

8BD
.

(3.41)

The constant difference between the fluid and particle velocities can be determined
by solving the quadratic equation

(U − u)2 +
18.3

0.3R
(U − u) − (1 − cmax )4.1

0.3cmax

sin θ = 0 (3.42)

that results from the boundary condition (3.14).
The analytical expression for the depth-averaged particle velocity can then be

obtained by integrating (3.40):

um

(1 − 1/σ )1/2
= − χ(cos θ)1/2

5D
h3/2

+
(BD cos θ)1/2

2D

[
(h − F )(2Fh − h2)1/2 + F 2 sin−1

(
h − F

F

)]

− (BD cos θ)1/2

2hD

{
− (2Fh − h2)3/2

3
+ F 3

[
h − F

F
sin−1

(
h − F

F

)

+

√
1 −

(
h − F

F

)2

− π

2

]}
. (3.43)
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Figure 6. Comparison between analytical and numerical velocity distributions: —, analytical
grain velocity; - - -, analytical fluid velocity; •, numerical grain velocity and ◦, numerical fluid
velocity when b = 0.05; +, numerical grain velocity and �, numerical fluid velocity when
b = 0.50.

The volume flux of particles associated with this is simply

q = c̄umhW. (3.44)

In the following, the analytical and the numerical solutions are compared for the
parameters of the model that are introduced in the next section; in particular, χ = 0.5,
μw = 0.27 and μmin = 0.41. For simplicity, the concentration is taken to be c̄ = cmax .
The assumption of a constant concentration c̄ in the flow is the first step in an iterative
process. Once the distribution of the inertial parameter is obtained by solving (3.39),
it is possible to evaluate the analytical distribution of the concentration using the
linear rheology of (3.10). For this and for the numerical solution, the parameter b of
the rheology is required. The numerical simulations of da Cruz et al. (2005) on disks
and Mitarai & Nakanishi (2007) on spheres show that the ratio b/χ is in the range
0.4 to 0.8. Here, in order to evaluate the sensitivity of the solutions to this parameter,
we take b equal to 0.05 and 0.50, corresponding to ratios b/χ equal, respectively, to
0.1 and 1.

In figure 6, the fluid and particle velocity distributions obtained from the numerical
solution of (3.16)–(3.23) are compared with the profiles of the analytical solution.
First, the difference between fluid and grain velocities is small, both for the analytical
and the numerical solution. Figure 5 shows that this is due to a large drag coefficient
and not to a negligible drag force, which is of the same order of magnitude as the
other terms in (3.34). The figure also indicates that the solution is not very sensitive
to the parameter b, because its variation by one order of magnitude causes only a
slight change in the velocity distribution close to the free surface. Figure 7 shows the
comparison between the numerical and the iterated analytical concentration profiles.
Apart from the fact that the numerical concentration profiles are S-shaped, while
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Figure 7. Comparison between analytical and numerical distributions of the particle
concentration: —, analytical and +, numerical concentration profiles when b = 0.50; - - -,
analytical and ◦, numerical concentration profiles when b = 0.05.

the analytical ones are parabolic, the values of the concentration through the flow
are everywhere very close to cmax , when b =0.05, and slightly less than cmax , when
b = 0.50.

At first sight, figure 7 seems to contrast with the experimental concentration profiles
reported by Armanini et al. (2005), which range between 0.30 and 0.69. However,
the concentration measurements of Armanini et al. (2005) involve great uncertainty
when the concentration is high; this is everywhere in the flow except in a thin layer
close to the free surface. However, a concentration profile obtained by Spinewine
et al. (2003) using a more sophisticated stereo-imaging system indicates that the
concentration may be below 0.50 in as much as the upper third of a saturated flow.
At concentrations below 0.50, the divergence of the flux of fluctuation energy is not
negligible, the algebraic relation between the stress ratio and the inertial parameter
begins to break down, and the simple theory fails to reproduce the distribution of
particle concentration.

The difference between analytical and numerical concentration profiles is essentially
due to the assumption that U ′ = u′. As already mentioned, the numerical solutions
show that there is a part of the flow near the top where the grains are faster than the
fluid. Consequently, in this part, U ′ is greater than u′, so that the term related to the
fluid shear stress in (3.34) is actually greater and the value of μ is less in the numerical
solution than in the analytical approximation. The opposite applies to the lower part
of the flow. The comparison between analytical and numerical distributions of μ is
shown in figure 8.

These defects of the approximate analytical solution and the unavoidable presence
of the parameters in the rheology that must be obtained through comparisons with
experiments seem small compared to the advantages of dealing with relatively simple
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Figure 8. Comparison between analytical and numerical distributions of the effective friction
μ: —, analytical μ-distibution; +, numerical μ-distribution when b = 0.50; ◦, numerical
μ-distribution when b = 0.05.

and explicit expressions that provide a full description of the flow. We next test the
capability of the approximate analytical solution to reproduce the experimental data.

4. Comparison
Here, the predictions of the analytical approximation of the present theory are

compared with the measurements of Armanini et al. (2005) and Larcher et al. (2007).
To do this, the parameters measured or suggested by them are adopted. These are
σ = 1.54, d = 0.0037 m, cmax = 0.69 and W = 54d . The values of χ and μmin for the
rheology and of μw for the sidewall friction must be set through fitting with the
experiments. Equation (3.36) indicates a linear relation between the flow depth h and
the tangent of the bed inclination, tan θ , where the angular coefficient is proportional
to 1/μw and the intercept is proportional to μmin/μw . Hence, it could be possible to
use the experimental values of h against tan θ reported by Armanini et al. (2005)
to evaluate μmin and μw . However, Armanini et al. (2005) evaluated the flow depth
and the mean velocity through depth-averaged momentum and kinetic energy. In
conjunction with their definition of the bed, this leads to a value of the grain velocity
there that is still a quarter of its maximum (see their figure 16). To be consistent
with our definition of the bed as the place where the grain velocity and the inertial
parameter are zero, we have reconsidered the data of Larcher et al. (2007) for their
saturated flows, and the flow depth has been evaluated as the distance from the free
surface where the granular temperature vanishes. Figure 9 shows the experimental
values of h versus θ and the theoretical curve of (3.36) with μmin =0.41 and μw =0.27.
The values of these parameters are close to others reported in literature (Taberlet
et al. 2003; GDR MiDi 2004; da Cruz et al. 2005; Jop et al. 2005). The value of χ in
the grain rheology has been set through fitting the experimental values of the mean



Saturated granular–liquid mixtures 407

8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7
20

22

24

26

28

30

32

Inclination (deg.)

F
lo

w
 d

ep
th

, d

Figure 9. Predicted flow depth versus angle of inclination (solid line) and the measured
values for the saturated flow (open circles) obtained from Larcher et al. (2007).

8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7
0.1

0.2

0.3

0.4

Inclination (deg.)

M
ea

n 
gr

ai
n 

ve
lo

ci
ty

 (
m

 s
–1

)

Figure 10. Predicted (lines) mean grain velocity versus angle of inclination and the measured
(open circles) values for the saturated flow obtained from Larcher et al. (2007): - - -, χ = 0.1;
—, χ = 0.5; - · -, χ = 1.0.

grain velocity obtained from the integration of the velocity profile reported in Larcher
et al. (2007) over our flow depths. Figure 10 shows that the best fit is obtained for
χ =0.5. The sensitivity of the analytical solution to this parameter is also shown.
Decreasing χ by one order of magnitude increases the mean velocity by a factor of
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Figure 11. Predicted velocity profiles (lines) shown with the measured velocity profiles
(symbols, Larcher et al. 2007) for the particles: —, and ◦, for θ =8.5◦; - - -, and �, for
θ = 8.4◦; - · -, and �, for θ = 8.1◦.

two. Figures 11 and 12 show that the parameters determined using global quantities
such as depth and mean velocity result in excellent predictions of the distributions
of the particle velocities and stresses reported by Larcher et al. (2007). Although the
small number of experiments does not allow us to truly test the capability of the
present theory, the fact that the parameters employed are in good agreement with their
corresponding values for dense, dry granular flows provides additional reinforcement
for their use.

5. Conclusions
A relatively simple theory based on a realistic rheology for the particle interactions

has been applied to steady fully developed flows of saturated granular–liquid mixtures
over erodible beds. The main aspects of the theory are: (i) the particle rheology is
characterized by a linear dependence of the stress ratio on the inertial parameter and
by the presence of a yield, as in the case of dense and dry granular flow; (ii) the
sidewalls exert on the particles a frictional force, which has been demonstrated to play
a fundamental role for dry granular flows over an inclined bed; (iii) the resistance in
the interstitial fluid is modelled using a simple turbulent mixing length; and (iv) the
particle and liquid phases interact only through buoyancy and drag. The introduction
of three further approximations concerning the constancy of concentration, mixing
length and difference between fluid and particle velocities in the flow permits analytical
expressions to be obtained for the depth, distributions of fluid and particle velocity,
and volume fluxes over a range of free-surface inclinations. Such results can be very
useful in engineering applications. Three parameters in the model have to be specified
through fitting with experiments, but it should be emphasized that at least two of them,
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Figure 12. Predicted (lines) and measured values (symbols, Larcher et al. 2007) of the
gravitational contribution to the mixture shear stress (dotted line and open triangles) and
of the particle effective normal stress (solid line and open circles) for θ =8.5◦.

the stress ratio for the yield of the bed and the sidewall friction coefficient, have a clear
physical meaning, and reasonable values for all of them appear in previous works.

The analytical solutions were tested against the experimental measurements of
saturated debris flows made by Armanini et al. (2005) and by Larcher et al. (2007)
in a recirculating flume. The comparisons show that the theory has the capability of
reproducing the experimental results. The theory will be extend to include the cases of
oversaturated and undersaturated debris flows; that is, when a difference between the
depths of the flowing particles and the flowing liquid is present. Steady fully developed
descriptions of the rheology, similar to those developed here, are often employed
in depth-averaged descriptions of unsteady developing flows (e.g. Savage & Hutter
1989; Iverson 1997).

The authors are grateful to Professor Enrico Larcan for making possible their
collaboration and for his support of this study. We dedicate this paper to him on the
occasion of his sixtieth birthday.
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